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ABSTRACT: Membrane technology can effectively remove acidic
gases (H2S and CO2) from natural gas. Covalent organic frames
(COFs) have been widely used as membrane materials due to their
large pore size and pure organic properties. This work combines
machine learning (ML) and molecular simulation (MS) to develop
a method for rapidly screening and discovering high-performance
COF-based membranes. The ML model is first trained on MS
data, using the structural and chemical features obtained from 20
calculations as inputs. Characteristic contributions were obtained
through interpretable analytical models, and nearly 70,000 COFs
were quickly screened. Finally, the top 10 high-performance COFs
were selected by MS under the mixed gas condition, and the
properties of the mixed matrix membranes (MMMs) obtained by
combining them with six polymers were analyzed. The results show that the highest acid gas permeability of COF-based membranes
reaches 8 × 105 Barrer, and the void fraction is the key factor determining the separation performance. The top COFs serve as
effective fillers to enhance the performance of polymer membranes, which surpass the capabilities of existing MOF fillers. This paper
provides an efficient and rapid method for the discovery of COF-based membranes for natural gas deacidification.

1. INTRODUCTION
Natural gas is a viable alternative to traditional fossil fuels as an
acceptable energy source in transition to clean energy systems
and economies.1 It plays a pivotal role in the global energy
transition due to its abundant reserves, wide distribution, low
pollution levels, and high calorific value.2 Nevertheless, it is
important to note that natural gas comprises not only CH4 but
also carbon dioxide (CO2), hydrogen sulfide (H2S), N2, and
other impurities. Acidic impurities (e.g., H2S and CO2) in
natural gas not only reduce the calorific value but also cause
potential pipeline corrosion. Consequently, the separation of
acid gases from natural gas becomes critical for its effective
utilization.3 Presently, various technologies are employed for
the desulphurization of natural gas, including liquid absorp-
tion,4 solid adsorption,5 and membrane separation.6 Among
these methods, membrane separation has the advantages of
small footprint, low energy consumption, and ease of
operation.7 Conventional amorphous polymer membranes
are limited by “permeability-selectivity” constraints.8 Over
the past two decades, nanoporous materials (NPMs) have
become key materials for enhancing membrane separation
performance. Zeolites,9 metal−organic frameworks (MOFs),10

and porous polymer networks (PNNs)11 have been widely
investigated and exhibited good separation performance.

Covalent organic frameworks (COFs) are an emerging class
of crystal network porous materials. Constructed by assem-
bling organic joints composed of reversible covalent bonds,
they have the advantages of low density, tunable structure and
high porosity, etc.12 They are widely applied in many fields,
such as gas storage,13 separation,14 and catalysis.15 COFs can
be prepared as pure COF-based membranes,16 as fillers added
into polymer substrates to be prepared as COF-based mixed-
matrix membranes (MMMs),17 and hybrid membranes (with
MOFs18 and GO19). Like MOFs, the number of COFs that
have been experimentally synthesized and documented has
steadily increased over time, reaching a count in the thousands.
The production of COF-based membranes is a complex
process, requiring stringent conditions and lengthy gas
separation testing cycles.20 Consequently, examining every
COF material through conventional trial-and-error methods in
a laboratory is impractical.
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With the rapid development of materials science and
computer science, high throughput computational screening
(HTCS) has become an effective method to evaluate material
properties.21−23 For porous membranes, Grand Canonical
Monte Carlo (GCMC) and molecular dynamics (MD)
simulations are the basis for high-throughput calculations.
Numerous computational systems with HTCS have been
established to study the gas separation properties of COFs.
Feng et al.24 examined the performance of 688 COFs that were
synthesized experimentally for He/CH4 and He/N2 membrane
separation. The evaluation was conducted using both infinitely
diluted and real gas mixtures, leading to the identification of
the top five COF materials with high-performance membrane
separation properties. Regarding the membrane separation of
acid gas from natural gas, the main research focuses on MOFs
materials. Qiao et al.25 established the conformational
relationship between structural descriptors and CO2/N2/CH4
membrane separation performance by molecular simulation of
4764 CoRE MOFs, and identified the membrane screening
pathway for high-performance MOFs through decision tree
modeling. Similarly, Glover et al.26 calculated the H2S/CH4
and CO2/CH4 membrane separation performance of 7909
MOFs under infinite dilution conditions and reported the
hydrophobic structures of specific MOFs, which provided an
effective screening method for novel MOFs for biogas
upgrading.
High-throughput calculations based on MS are costly and

inefficient for screening materials in large databases. As an
alternative, machine learning (ML) is increasingly popular for
understanding complex structure−property relationships,
predicting material properties, and expediting material
discovery.27 Many researchers are now utilizing ML and
molecular simulation (MS) to assess the performance of new
materials.28−30 This approach serves as a valuable tool to guide
experimental efforts in discovering promising COF materials.
In the realm of material discovery, the interpretability of ML
models holds significant importance. It enables us to establish
trust in the model, analyze the impact of features on predicted
results, and gain valuable chemical insights. Currently,
interpretability for material property prediction primarily relies
on ex post facto interpretability. For instance, Daglar et al.31

achieves model interpretability by computing internal feature
importance through a tree-based machine learning model,
while Yang et al.32 calculate fingerprint feature importance for
polymer gas separation membranes by using Shapley additive
explanations(SHAP). Drawing insights from interpreting ML,
greater attention should be devoted to these crucial factors
when designing new membrane materials.
Despite many material screening efforts, the screening of

COF membranes for acid gas separation has not been
systematically investigated. To fill this gap, the present work
is based on interpretable machine learning and molecular
simulation to study the latest 811 CURATED-COFs as well as
69840 hypothetical COFs (hCOFs) for acid gas membrane
separation. First, 811 CURATED-COFs were prescreened
based on structural knowledge. Second, molecular simulation
calculations were performed on the prescreened CURATED-
COFs and structure−property relationship analyses were
carried out on this basis. Then, rapid screening of hCOFs
was performed by the feature knowledge of top COFs obtained
from SHAP analysis with machine learning. Finally, the
obtained high-performance COFs were again subjected to
rigorous ternary mixture molecular simulations to evaluate
their gas permeability and selectivity and the performance of
MMMs obtained in combination with six polymers was
investigated.

2. METHODS
This section describes the proposed workflow combining
interpretable machine learning and molecular simulation for
COF membrane discovery for acid gas separation in natural
gas, as shown in Figure 1.
2.1. COFs Data Sets and Polymers. In this work, the

COF data were obtained from the latest Clean, Uniform and
Refined with Automatic Tracking from Experimental Database
(CURATED) COFs (containing 811 COFs)33 and the
computer virtual synthesis of the hCOFs database (containing
69,840 COFs).34 Notably, considering that three gases (H2S,
CO2, and CH4) are involved in the gas separation system, we
focus on COF materials with pore size limiting diameters PLD
> 3.8 Å and accessible specific surface area SA > 0 m2/g to
allow all the gas molecules to pass through the pores of the

Figure 1. Workflow for interpretable ML-assisted discovery of innovative COF-based membrane materials with high acid gas separation
performance.
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materials. Finally, 788 CURATED-COFs and 69,654 hCOFs
were used for further screening.
Based on the gas permeability, the experiment gas

permeation test results of polymeric membranes were collected
from literature, considering the representative polymeric
membrane materials with separation performances located
low (e.g., cellulose acetate), medium (e.g., Polyimide) and high
region (e.g., PIM). We selected six typical polymers from the
literature that have been widely used in the preparation of H2S
and CO2 separation membranes and whose gas separation data
are listed in Table S1.
2.2. Molecular Simulation and Calculation of Mem-

brane. Next, GCMC and MD simulations were carried out to
simulate the adsorption and diffusion behavior of gas
molecules in COF-based membranes. First, for the start of
the screening, the adsorption coefficients (Ni) and self-
diffusion coefficients (Di) were calculated for single
component gases at 298 K and 10 bar for H2S, CO2 and
CH4, respectively. All simulations were performed using
RASPA2.0.35 CH4 was modeled as a single spherical nonpolar
atom.36 CO2 was modeled as a three-point rigid model.37 H2S
was modeled as a four-site model where the LJ charge sites are
located on a pseudoatom, two hydrogen atoms, and a
pseudoatom.38 COF-gas and gas−gas interactions were
performed using the Lennard-Jones (LJ) potential description.
The Dreiding force field is used to describe the elemental
composition of COFs,39 and the Universal Force Field (UFF)
is used to describe other metallic elements,40 and the work of
Wang et al.41 have demonstrated that the “UFF_Dreiding”
hybrid force field is in good agreement with experiment. Due
to the presence of polar gas molecules, charge equilibrium
(Qeq) calculations are used to quickly compute the partial
charges of the atomic framework of COFs.42 The Lorentz−
Berthelot mixing rules were implemented to obtain pair
potentials between different atoms and Ewald summation is
used to compute long-range electrostatic interactions.43 Tables
S2 and S3 provide details of the atomic parameters for the
modeling of the gas molecules as well as the force field

simulation parameters, respectively. In GCMC simulations, we
used 1 × 104 cycles for initialization and another 1 × 104 cycles
for taking the ensemble averages. The number of GCMC
cycles used was also tested to ensure simulation accuracy.
Figure S1 shows that the COFs with different gas adsorption
levels remain stable in the simulation with different number of
cycles, thus demonstrating that further increasing the number
of cycles has little effect on the simulation results.
The end-state results of the GCMC simulation were used as

the initial state for the MD simulation after 1 × 103 cycles of
initialization and 1 × 104 cycles for the equilibration of each
COF. Considering computational efficiency, the mean-square
displacements (MSD) of the single-component gas in the NVT
system were obtained using 1 × 106 cycles at a time step of 1
fs. Subsequently, we performed molecular simulations of
ternary gas (H2S/CO2/CH4 = 20/20/60) mixtures for the
screened high-performance COFs at 308 K and 14 bar. The
simulation conditions are consistent with those we have
collected from the literature for polymer gas tests (shown in
Table S1).
Daglar et al. considered flexible structures and found that

there was little effect on the calculation results compared to
rigidity.44 So rigid structure is used for all the COF structures
in this calculation. The cutoff is set to 13 Å, and the number of
crystal cells is automatically generated which means that the
size of the crystal cell along the x, y and z dimensions should at
least exceed twice the cutoff.
According to the solution-diffusion model,45 permeability

and membrane selectivity can be determined by gas adsorption
and gas diffusivity. Detailed calculation formulas are listed in
Table 1, including the formulas for single-component,
multicomponent gases and MMMs. Here, Ni, Di, and fi are
the uptake, self-diffusivity of gas i, and feed side pressure of the
membrane, respectively, and the permeate was assumed to be
at vacuum.46 For the calculation of MMMs, Maxwell model is
the most widely used permeation model, especially under the
condition of low packing coincidence (volume fraction ≤0.2).

Table 1. Calculation Formula for COF-Based Membranea

Condition Property Formula

Single component gas

Permeability (Barrer) =
× × ×

P
N D

fi
i i i

i

Pi=×Ni×Di×ρifi

Membrane selectivity (−) =S P P/i j i j/

Si/j=Pi/Pj

Mixture gas

Permeability (Barrer) =
× × ×

P
N D

fi
Mix i i i

i
Mix

PiMix=×Ni×Di×ρifiMix

Membrane selectivity (−) =S P P/i j
Mix

i
Mix

j
Mix

/

Si/jMix=PiMix/PjMix

MMMs Permeability (Barrer) = × × + + ×
+ + ×

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
P P

P P
P P

2 (1 ) (1 2 ) ( / )
(1 ) (1 ) ( / )

MMM p
COF p

COF p

PMMM=Pp×[2×(1−φ)+(1+2φ)×(PCOF/Pp)(1+φ)+(1−φ)×(PCOF/Pp)]
ai and j: gas species (H2S, CO2 or CH4); Ni: gas uptake (mol/kg); Di: self-diffusivity (m2/s); ϕ: the void fraction of COF; ρi: the density of COF
(g/cm3); f i: partial fugacity of gas (Pa); PMMM: gas permeability of COF/polymer MMM (Barrer); Pp: gas permeability of polymer (Barrer); PCOF:
gas permeability of COF membranes (Barrer); φ: volume fraction of COF filler in MMM (≤0.2); 1 Barrer = 3.348 × 10−16 momol · m/(m2·s·Pa).
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We used a filler loading (φ) of 0.2 to maximize MMMs
performance while maintaining Maxwell model’s range.47

2.3. Feature Analysis of COFs. In this study, four types of
COF descriptors that can be quickly computed are developed.
For the pore size and structure descriptors, LCD, PLD, ρ, SA,
and VF were calculated by the open-source software Zeo+

+0.3,48 where SA and PV were calculated considering a
spherical molecular probe with a radius of 1.86 Å
(corresponding to the N2 kinetic diameter) and 0 Å,
respectively. The VF was estimated using He with a radius
of 1.32 Å as a probe49 using the RASPA 2.0. The Dimensions
aims to distinguish between 2D/3D structural COFs as a

Figure 2. Bivariate analysis of the effect of features on H2S adsorption (a, b, c, d) and diffusion (e, f, g, h) in 773 COFs. (a, e) Pore size (PLD and
LCD); (b, f) Structure (Density and VF); (c, g) Atomic (H% and C%); (d, h) Chemical (AWE and DUC).
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dichotomous feature. In addition, atomic descriptors and
chemical descriptors have been added to further refine the
feature space of the COFs. Specifying the number of elements
divided by the total number of atoms in the COF to get C%, H
%, Halogen%, nitrogen−oxygen pairs (N-to-O), and so on to
get atomic descriptors. Since nitrogen-containing functional
groups are known to be part of the organic linkers in NPMs,
and oxygen atoms are mostly doped into the metal clusters, the
ratio of nitrogen atoms to oxygen atoms reflects the
distribution of adsorption sites between linkers and clusters.50

We introduced this concept into the COF descriptors, where
the nitrogen−oxygen ratio of the COF without oxygen atoms
is labeled as 0. The chemical bond unsaturation (TDU, DUC)
and electronegativity (TE, AWE) of the compounds were
calculated to get the chemical property descriptors and the
detailed calculation formula is as follows.51 The descriptions
and data distribution of all 20 classes of features are shown in
Table S4.
Highly correlated features may lead to problems such as

overfitting, poor model generalization, and low prediction
accuracy.52 Pearson’s correlation coefficient (r) is used in
mathematics to measure the linear correlation between two
sets of variables X and Y. It takes a value between −1 and 1.
The larger the absolute value means the stronger the linear
correlation between the two variables. We calculated the r
value between each feature of the two databases (CURATED-
COFs and hCOFs) respectively. And select the features in the
two databases that have high correlation in common, in which
LCD/PLD and TE/AWE have strong correlation, respectively
0.98 and 0.99, so choose to delete LCD and TE descriptors,
and the rest of the features correlation are lower than 0.95. The
heatmap of feature correlation is shown in Figure S2.
2.4. Automated Machine Learning and Interpretable

Analysis. The membrane properties obtained from molecular
simulation are used as the prediction target, and four sets of
descriptors are used as input features for machine learning
model construction. The automated machine learning tool we
used is the Tree-based Pipeline Optimization Tool (TPOT),
which is an automated machine learning tool that integrates
feature processing, model selection, and hyperparameter
optimization.53 The feature processing and model selection
are performed by calling the scikit-learn toolkit for pipeline
optimization and genetic algorithm for optimal prediction. The
data is divided into 80% training set and 20% test set, and

stratified sampling is followed to ensure that the feature
distribution of the training set and test set is consistent, to
prevent overfitting we use a 5-fold cross-validation to avoid
overfitting. Four metrics, coefficient of determination (R2),
root-mean-square error (RMSE), mean absolute error (MAE),
and Spearman’s rank correlation coefficient (SRCC) are used
to evaluate the model’s effectiveness. Detailed formulas are
given in Table S5.
Interpretability is currently an important development in

machine learning, which avoids black-box models leading to
ambiguous guidance for materials science. In this work, we also
investigate feature interpretability based on ML models. We
use the SHAP interpretability tool. This is an additive feature
explanation model inspired by cooperative game theory, where
all features are considered as “contributors” to the predicted
value, resulting in SHAP value.54 SHAP value can reflect the
influence of features in each sample and show the positivity
and negativity of the influence. The best machine learning
algorithm given by TPOT in this research work is different for
different prediction tasks. We use the corresponding SHAP
interpreter for each ML model, mainly the tree-based explainer
and the linear-based explainer.

3. RESULTS AND DISCUSSION
3.1. Structure-Performance Analysis and Membrane

Properties. First, structure-performance relationships be-
tween four classes of descriptors and simulated data on gas
adsorption and diffusion were established. Two features from
each class of descriptors were selected, namely LCD and PLD
for the pore size descriptors, ρ and VF for the structural
descriptors, H% and C% for the atomic descriptors, AWE and
DUC for the chemical property descriptors. Figure 2. illustrates
the relevance of these features for the adsorption and diffusion
of H2S. From Figure 2a, it can be seen that COF with pore size
between 10 and 25 Å can adsorb H2S more, however, Figure
2e shows that larger pore size leads to higher self-diffusion
coefficients; The low density (0.10−0.25 g/cm3) of COF is
often accompanied by high void fraction (0.8−0.95), which
also implies high adsorption of H2S (Figure 2b), and a similar
pattern exists in diffusion of H2S (Figure 2f); For atomic
descriptors and chemical property descriptors, it can be seen
from Figure 2 that high adsorption and diffusion are
distributed in COFs with medium H% (0.3−0.4), medium C
% (0.5−0.7), low AWE (0−0.5), and medium DUC (0.5−0.8).

Figure 3. Scattered distribution of adsorption, diffusion, and membrane selectivity.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.4c00855
Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.4c00855/suppl_file/ie4c00855_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.4c00855/suppl_file/ie4c00855_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.4c00855/suppl_file/ie4c00855_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c00855?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c00855?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c00855?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c00855?fig=fig3&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.4c00855?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figures S3 and S4 also show the structure−property
relationship between the adsorption and diffusion of CO2
and CH4 with the four types of descriptors, respectively. Taken
together, a similar pattern can be obtained: for gas adsorption,
COFs with PLDs between 5 and 25 Å have higher H2S and
CO2 adsorption, but for CH4 adsorption there is a small
positive correlation with pore size (Figure S4a). The effect of
structural descriptors on adsorption is more pronounced, with
low density accompanied by high void fraction determining
higher gas adsorption. For gas diffusion, the pore sizes of COFs
all showed positive correlations, and similarly, the densities
showed negative correlations. Moreover, neither the atomic
descriptors nor the chemical property descriptors showed
significant conformational correlations. Considering that the
time-scale-based MD simulation is more complex and time-
consuming than GCMC, the correlation of the above feature
relationships is slightly less obvious compared to the
adsorption amount.
After calculating the gas adsorption and diffusion at 10 bar

and 298 K, the distribution of adsorption selectivity, self-
diffusion selectivity, and membrane selectivity of COFs can be
obtained as shown in Figure 3. Based on the selectivity
calculation equation, high membrane selectivity is obtained by
the combination of high adsorption selectivity and high
diffusion selectivity. However, the trend of the two tends to
be opposite, which is caused by the incompatibility between
the adsorption and diffusion movement of gas molecules, i.e.,
the molecules that can be easily adsorbed diffuse more slowly.
Therefore, the highly selective COFs have Sads ,H d 2S/CH d 4

(Sads,CO d2/CH d4
) in the range of 9.7−39.8 (4.1−16.8), and

Sdif f,H d2S/CH d4
(Sdif f,CO d2/CHd4

) in the range of 0.04−0.21 (0.1−0.7).
In addition to this, Figure S5 compares the H2S/CH4
selectivity of COF membranes with CO2/CH4 selectivity. In
real natural gas where acid gases are often present at the same
time, we should pay equal attention to COFs with both high
H2S selectivity and CO2 selectivity. COFs with H2S
permeability greater than 2.5 × 105 and CO2 permeability
greater than 1.8 × 105 were selected to have high acid gas
permeability. For them, the H2S/CH4 selectivity is distributed
in the range of 0.36−4.26 and the CO2/CH4 selectivity is
distributed in the range of 0.28−2.61. It can be found that the
H2S selectivity is higher in the acid gas regime, which is also

consistent with the findings of the subsequent mixture
simulations.
To better understand the performance of COF membranes.

Figure 4 shows the H2S permeability and H2S/CH4 selectivity
as well as CO2 permeability and CO2/CH4 selectivity of the
COF membranes. Similar to polymers, COF membranes also
have permeability-selectivity trade-offs, and only a few COFs
can approach the upper bound curve. A gradient classification
of COFs based on void fraction clearly shows the effect of the
high void fraction on the performance of the membrane. This
is consistent with the findings of our structure-performance
relationship analysis described above and is further verified in
subsequent interpretable machine learning.
3.2. ML Model Prediction and Interpretability

Analysis. Based on the 18 fast computational features
developed above, we developed corresponding machine
learning models for each type of task to predict gas adsorption,
diffusion, and permeability. After removing the redundant
features of LCD and TE that possess high correlation
properties. All other features can be used as input variables.
It is worth noting that TPOT has the capability of feature
processing. Therefore, there is no need to normalize the
features, and the only thing we need to do is to construct a
“feature-attribute” data structure. In this summary, LassoLars
CV, Extra Trees Regressor, Gradient Boosting Regressor, XGB
Regressor, Ridge CV, and Random Forest Regressor are used
for the regression task of COF membrane performance
prediction. Among them, Lasso,55 Random Forest,56 and
Extreme Gradient Boosting Tree57 are used to train ML
models for MOFs. Based on the number of iterations of the
genetic algorithm and the size of the population evolution,
different feature processing methods and model pipelines may
be found. Table S6. shows the best ML pipeline and
hyperparameters based on gas adsorption, diffusion, and
permeability properties.
By directly inputting all features, highly accurate prediction

results can be achieved. Figure S6 shows that the gas
adsorption and diffusion predicted by the ML model compared
to the result of molecular simulation. The accuracy of gas
adsorption prediction is notably high, particularly for CH4
adsorption, where the R2 values for the training and test sets
are 0.999 and 0.985, respectively, and the SRCC values are
0.984 and 0.981, respectively. The slightly lower accuracy in

Figure 4. H2S permeability and H2S/CH4 selectivity (a), CO2 permeability and CO2/CH4 selectivity (b) of COF membranes at 10 bar, 298 K. The
VF indicates void fraction.
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Table 2. Best ML Model and Evaluation Indicatorsa

Training set Test set

Target R2 RMSE MAE SRCC R2 RMSE MAE SRCC

NHd2S 0.999 0.274 0.099 0.999 0.904 4.342 2.203 0.900
XGBRegressor

DH d2S 0.892 0.244 0.139 0.879 0.914 0.287 0.153 0.852
RidgeCV

PHd2S 0.986 1.165 0.440 0.997 0.942 2.240 1.481 0.952
RandomForestRegressor

NCO d2
0.948 0.812 0.235 0.999 0.852 1.437 0.879 0.895

GradientBoostingRegressor
DCO d2

0.965 0.289 0.213 0.941 0.873 0.352 0.769 0.907
LassoLarsCV

PCO d2
0.994 0.511 0.383 0.987 0.928 1.770 1.163 0.901

XGBRegressor
NCHd4

0.993 0.059 0.040 0.984 0.985 0.065 0.045 0.981
LassoLarsCV

DCHd4
0.999 0.342 0.202 0.999 0.767 3.982 2.792 0.750

ExtraTreesRegressor
PCHd4

0.999 0.420 0.215 0.999 0.856 4.366 2.885 0.837
ExtraTreesRegressor

aThe unit of gas adsorption (Ni), diffusion (Di), and permeability (Pi) are mol/kg, 10−8 m2/s, and 104 Barrer, respectively.

Figure 5. Marginal distribution scatter plots of gas (a, c, e) permeability data predicted by the ML model compared with molecular simulation
results and SHAP feature importance distribution (b, d, f) of the corresponding ML model. Features are listed in top-down descending order based
on SHAP values, and only the top six important features are shown in the figure.
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predicting CO2 and H2S adsorption can be attributed to the
greater complexity of the multiatom modeling compared to the
spherical modeling used for CH4, which makes the
mathematical relationship between CH4 adsorption properties
and features more apparent. In contrast to GCMC, MD
modeling is more intricate. Before this study, ML modeling for
predicting COF diffusivity had not been extensively inves-
tigated. Seda et al.31 examined diffusion ML modeling based
on MOF membranes and reported similar findings, where the
prediction accuracy of gas diffusion was relatively low but
consistently maintained an R2 value above 0.85, except for CH4
diffusion with an R2 of 0.77, which still demonstrates a high
level of prediction accuracy.
Considering that the gas permeability is calculated from the

adsorption and diffusion data, the ML model, which is directly
used to predict the gas permeability calculated from the
simulated data, was constructed. Table 2 presents the model
evaluation metrics, namely R2, RMSE, MAE, and SRCC, along
with the best ML model. The tree model is used more as the
best model for gas adsorption and permeability prediction and
the CV model is used more for diffusion prediction. Figure 5a,
5c, and 5e show the gas permeability obtained from ML
prediction compared with the data obtained from molecular
simulation calculations, respectively. It can be seen that the
two are in good agreement, and the direct construction of the
gas permeability prediction model is a more direct and efficient
prediction method. The R2 of the ML model for H2S
permeability reaches 0.942, and the SRCC reaches 0.952,
which is more accurate than the prediction of adsorption and
diffusion successively and then the calculation of permeability.
The ML models developed to predict gas adsorption,

diffusion, and permeability vary in the importance of various
types of features. Figure 5b, 5d and 5f lists the top six
important features based on the three gas permeability
prediction models, with VF being the most contributing
feature for all of them and appearing mostly for the pore size
and structure descriptors. For specific SHAP feature
contribution values, see Figure S7. The contribution of all
features was calculated using SHAP and presented in Figure 6
through radar plots. Pore size and structure descriptors

contribute most of the feature influence for almost all models.
VF has been found to make the greatest contribution overall.
The influence of PLD on adsorption is found to be more
significant than that of diffusion. PV, on the other hand, plays a
larger role in the diffusion of H2S and CO2 compared to VF,
accounting for 57% and 55% respectively. SA only exhibits a
significant impact on the prediction of CO2 adsorption,
contributing 28% to its overall performance. This further
underscores the dependability of the extracted feature
knowledge. For atomic descriptors and chemical property
descriptors, their contributions are generally low. Only the
prediction of CH4 adsorption and diffusion has a higher
contribution than the other tasks. We note that for the three
prediction tasks of H2S diffusion, CO2 diffusion, and CH4
adsorption, some of the atomic descriptors and chemical
property descriptors have a SHAP value of 0. This is because
they use the linear regression models LassoLarCV and
RidgeCV, which are based on compression estimation with
different regularizations. They compress the unimportant
features for high-dimensional data. So, it will get the features
with the contribution of 0 SHAP value are calculated by the
linear explainer.
It is important to note that similar findings have been

observed in experimental studies regarding the influence of
porosity and pore size on the effectiveness of NPMs
membranes.58−61 Compared with the pore size of COF, void
fraction and pore volume have more influence on gas
permeability. By analyzing the pore size of the top COF base
membrane, it can be found that the pore size of the high-
performance COF membrane is maintained at 15−25 Å, which
indicates that neither too small nor too large pore size is
suitable for the formation of high-performance COF-based
membranes. From the perspective of membrane analysis, too
small pore size will obstruct the gas transport channel and lead
to decreased permeability, while too large pore size will limit
the gas fraction efficiency and lead to pore blockage in the
polymer compatibility process.62,63 This directly proves that
our data-driven interpretability agrees with physical exper-
imental experience.
In this subsection, highly accurate ML models are

constructed for the adsorption, diffusion, and permeability of
three gases. For the evaluation of membrane performance, the
direct construction of prediction models for gas permeability is
an effective method. The feature contribution analysis is
performed by the machine learning interpretability tool of
SHAP. It was found that VF contributes the most to the
model, and not only that, the rest of the pore size and
structural descriptors have a significant contribution. In
comparison atomic and chemical property descriptors have
less impact on the prediction task. In the next section, we will
use the obtained feature knowledge for fast screening of the
hCOFs database.
3.3. Rapid Screening of the hCOFs Database. Based on

molecular simulation calculations to obtain the membrane
performance of CURATED-COFs, we first focus on the top
COFs with high gas permeability COF membranes. On this
basis, COFs with H2S/CH4 selectivity >1 and CO2/CH4
selectivity >0.7 were selected, resulting in TOP20 COFs.
Leveraging the chemical knowledge extracted from the
machine learning model discussed in the preceding subsection,
we identified key features, namely PLD, Density, SA, PV, and
VF, as primary metrics for rapid screening of hCOFs in the
subsequent subsection. Additionally, we incorporated the key

Figure 6. Radar plots of feature importance for the gas adsorption,
diffusion, and permeability of COFs. The SHAP values for each type
of explainer have been normalized, and the scale range shows a Log
distribution from 0.01 to 1.
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pore size and structure descriptors as prescreening features. To
ensure a representative distribution of data, hCOFs were
swiftly screened based on specific intervals: PLD (15−25 Å),
Density (0.15−0.31 g/cm3), SA (5100−8300 m2/g), PV (2.7−
6 cm3/g), and VF (0.88−0.95). The large pore size and large
void fraction facilitate the passage of gas molecules, and the
low density and high pore volume ensure the framework
structure and the adsorption of gas molecules, resulting in
highly permeable and selective COFs. This screening process
yielded a database of 14,957 potential Candidate hCOFs
(cCOFs).
Predicting hCOFs directly using machine learning models

obtained by training with CURATED-COFs leads to a
decrease in accuracy, considering the feature differences before
the database. Here we consider the use of data augmentation
to supplement the training data to improve the model’s
prediction accuracy for hCOFs. The cCOFs were uniformly
sampled based on VF to obtain mini-cCOFs containing 500
COFs, which were computed by molecular simulation and
merged with the previous 788 CURATED-COFs (around
1300 data points in total) to construct ML models to optimize
the model’s generalization to the unknown chemical space. To
assess the uniformity of the COF feature space, the t-
distributed stochastic neighbor embedding (t-SNE) dimen-

sionality reduction method serves as an effective means of
visualization. This method has previously been extensively
employed in the comparative analysis of multiple MOF
databases.64 Figure 7a displays the visualization of CURA-
TED-COFs, hCOFs, cCOFs, and mini-cCOFs using t-SNE
dimensionality reduction, which projects the high-dimensional
feature distributions onto a 2D plane. It is evident that cCOFs
predominantly occupy the main chemical space, and the
preliminary screening showcases some degree of diversity.
Furthermore, the mini-cCOFs are more evenly distributed and
representatively sampled. The chemical space obtained by the
combination of CURATED-COFs and mini-cCOFs basically
covers the entire prediction space, which ensures the
prediction accuracy of rapid prediction screening. The color
distribution in Figure S8 indicates the gradient of void fraction
in cCOFs. The upper right to lower left direction on the
projection plane signifies low to high porosity, illustrating a
certain linear pattern within the intricate chemical space. This
further confirms the rationale behind uniform sampling based
on VF.
After training the best machine learning (ML) model for

each prediction task (Table S7 for model training results), we
utilized ML models to directly predict the gas permeability of
tens of thousands of hypothetical COFs in the cCOF. Similar

Figure 7. (a) Projections of the feature distribution of the data based on t-SNE. (b and c) H2S/CH4 and CO2/CH4 permeability-selectivity
distributions obtained from the hCOFs database after ML projection. (d) Main linkers and topologies of top hCOFs.
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to CURATED-COFs, direct permeability prediction provides
more accurate and generalizable observations. The R2 values
for H2S and CO2 permeability reached 0.96, while the SRCC
for CH4 permeability reached 0.95, indicating the accuracy of
the prediction. All three gas permeability prediction models are
tree models (Table S8 shows the optimal pipeline parameters
for different tasks), ensuring that the predicted permeability
falls within the expected region in the permeability-selectivity
space. The predicted permeabilities for the ML model are
illustrated in Figure 7b and c for H2S/CH4 and CO2/CH4
separations. Compared to CURATED-COFs, we found highly
permeable COFs materials beyond the original chemical space.
Thirty of the predicted cCOFs have H2S permeabilities
exceeding 6 × 105 Barrer and up to 7.3 × 105 Barrer. In
terms of selectivity, the highest H2S/CH4 and CO2/CH4
selectivities are 3.6 and 1.9, respectively, which are similar to
the distribution of the top CURATED-COFs. Although most
of the cCOFs were in the lower left part of the upper bound,
we still found a few high-performance COF membranes close
to or even beyond the upper bound.
Considering the permeability-selectivity trade-off, we exam-

ined the structural characteristics of the top cCOFs. Most of
the top COFs possess a 3D structure, with most of their PLDs
centered around 20 Å and exhibiting high void fractions
(>0.9). Additionally, Figure 7d showcases the primary linkers
and topologies employed in their composition. Among these,
linker92 (1,3,5-tribromobenzene), linker99 (3,3,5,5-tetrabro-
mo-1,1-biphenyl), linker105 (3,3′,5,5′-tetrabromo-4,4′-biphe-
nyldiol), and linker108 (1,3,6,8-tetrabromopyrene) are the
most frequently occurring linkers. Linker49 (5,8-dibromoqui-
noxalin-2(1H)-one) and linker69 (1-(3,6-dibromopyrazin-2-

yl)ethan-1-one), on the other hand, are linkers that have each
appeared twice. In terms of topology, uni is the dominant
structure. Additionally, dmp, jea, and qtz also appear among
them. A small number of top-level 2D hCOFs exhibit the hcb
topology. The results show that based on the feature discovery
of the top CURATED-COFs, our proposed ML method based
on porosity gradient sampling accurately discovers promising
COF-based membranes in hCOFs.
3.4. TOP COFs and COF/Polymer MMMs. Further, we

carefully selected a total of 40 top-COFs, with 20 each from
CURATED-COFs and hCOFs. The obtained membrane
properties from the simulations are presented in Figure 9a,
where the acid gas permeability is determined by the combined
permeability of H2S and CO2, and the acid gas selectivity is
obtained by the sum of the H2S/CH4 selectivity and CO2/CH4
selectivity. It is important for a membrane to have both high
gas permeability and selectivity in order to be considered high-
performance. By evaluating the product of selectivity and
permeability, we identified the top five optimal COFs for both
CURATED-COFs and hCOFs, which are indicated with
asterisks. Detailed structural information and membrane
properties of these COFs can be found in Table 3, respectively.
In addition to this, In addition to this, Figure 8 visualizes the
structure of these top COFs (taken looking down the
crystallographic c-axis). Most of these COFs exhibited 3D
structures, such as JUC-551−2,65 JUC-508,66 and 3D-PY-
COF-2P,67 and were characterized by large pore sizes (>10 Å)
and high void fractions (>0.9). Notably, these COFs surpass
the Robeson upper bound and demonstrate exceptional
performance in acid gas separation. However, hCOFs have
not yet been experimentally synthesized and verified. None-

Table 3. Structural Parameters and Gas Separation Performance of TOP 10 COFs

COFs PLD (Å) VF (−) Di (−) PH d2S (Barrer) PCO d2
(Barrer) SHd2S/CH d4

(−) SCO d2/CHd4
(−)

JUC-551−2 10.1 0.91 3D 4.19 × 105 3.02 × 105 5.46 3.93
JUC-508 8.9 0.87 3D 6.01 × 105 1.85 × 105 5.19 1.60
3D-Py-COF-2P 12.3 0.91 3D 5.31 × 105 2.88 × 105 4.23 2.29
Ph-AnCD-COF 21.1 0.91 2D 3.70 × 105 2.30 × 105 4.70 2.92
JUC-519−2 8.9 0.89 3D 3.83 × 105 3.12 × 105 3.54 2.90
linker92_CO_linker14_NH_hcb_relaxed 19.1 0.89 2D 3.28 × 105 2.17 × 105 4.61 3.05
linker99_N_linker49_CH_uni_relaxed 23.4 0.93 3D 4.16 × 105 2.13 × 105 4.21 2.16
linker105_CH_linker80_N_uni_relaxed 22.9 0.90 3D 3.91 × 105 2.45 × 105 3.69 2.31
linker92_CH2_linker22_NH_hcb_relaxed 19.0 0.90 2D 3.90 × 105 2.22 × 105 3.49 1.99
linker105_CH_linker50_N_uni_relaxed 22.4 0.91 3D 3.44 × 105 2.62 × 105 3.13 2.38

Figure 8. Structural visualization of top 5 COFs in CURATED-COFs and hCOFs. All snapshots are taken looking down the crystallographic c-axis
of each structure.
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theless, the structural characteristics of highly permeable and
selective COF-based membranes can provide computational
and experimental membrane scientists with a reference
perspective for in-depth study of acid gas separation membrane
materials.
The incorporation of COFs into polymers to create MMMs

is an effective strategy for enhancing industrial applications and
improving the performance of polymer membranes compared
to pure COF membranes. In addition to the advantages similar
to other porous materials, COF has better miscibility affinity
with polymers due to its pure organic nature.68 Therefore, the
incorporation of COFs as fillers into polymer substrates
provides higher stability and compatibility. We selected six
representative polymer membranes for acid gas separation
from the literature and maintained consistent simulation
conditions for the ternary mixtures of top COFs as reported
in the literature. Before predicting the performance of mm, we
first verified the accuracy of the method. As shown in Figure
S9. Our simulation data is in good agreement with the data
collected by the experiment. Figure 9b presents data on 60
MMMs resulting from the combination of the top 10 COFs
with six polymers. The circular data in the figure indicates
COF/Polymer MMMs and COF filler loading is 20%. The
incorporation of COF-based fillers significantly enhances gas
permeability without compromising polymer membrane
selectivity. Furthermore, comparison with MOF/polymer
MMMs from the literature (data displayed in Table S9)
revealed that COF-based fillers outperform MOFs in terms of
permeability enhancement. These findings suggest that the
improved acid gas separation performance achieved by adding
COF-based fillers to the polymer matrix primarily stems from
increased permeability, with the selectivity of the polymer and
the permeability of the COFs predominantly influencing the
selectivity and permeability of the resulting MMMs,
respectively. However, COF can constitute up to 50 wt % of
the filler weight in polymers due to its organic nature.58 The
potential of improving the separation performance of polymer
membranes is greater than that of MOFs. Therefore,
researchers should prioritize COFs with high permeability
when selecting MMMs for acid gas membrane separation.

4. CONCLUSIONS
In this study, a new method combining interpretable ML and
MS was proposed to evaluate the separation performance of
COF based membranes for H2S/CH4 and CO2/CH4. First, the

molecular simulation of 788 COFs in CURATED-COFs
database was performed, and the structure and chemical
properties of the best COFs were qualitatively analyzed. Then,
by constructing automated machine learning models, most
models predict that R2 is greater than 0.9. Moreover, directly
building a model for gas permeability is a more effective
prediction method, and the R2 for H2S gas permeability
prediction reaches 0.94, which is higher than the adsorption
capacity and diffusion coefficient respectively predicted. After
that, SHAP analysis was used to calculate the characteristic
contribution degree of all the features, and the results showed
that the porosity contributed the most to the membrane gas
permeability. Next, we quickly screened nearly 70,000 hCOFs
using five important characteristics of high-performance
CURATED-COFs. Considering database differences, 500
representative hCOFs were further enhanced by molecular
simulation to train a new machine learning model to predict
the remaining hCOFs quickly. Finally, the mixture molecules
of 40 top-level COF were simulated. The exploration of COF/
polymer MMMs shows that high performance COFs can make
up for the lack of polymer permeability and effectively improve
the separation performance of acid gas. Our results not only
reveal the membrane separation potential of the vast chemical
space in the COFs database, but also help accelerate the design
and discovery of membrane materials in experimental work. It
provides important theoretical guidance for the development
of COFs-based membranes in the field of simultaneous
separation of H2S and CO2 from natural gas. At the same
time, it is also very important to experimentally synthesize
usable high-performance COF-based membranes, which can
be a subject of in-depth study by computational chemists and
membrane scientists.
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